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DYNAMICS OF LAMINAR VORTEX RINGS IN A STRATIFIED LIQUID 

V. S. Belyaev, A. M. Savinkov, and Yu. D. Chashechkin UDC 532.527 

The study of isolated vortices and interacting vortical structures on different scales 
(the principal structural elements in developed turbulence) is a traditional problem of fluid 
dynamics. In recent years there has been substantial progress in explaining the nature of 
the stability of vortices resulting from the stabilizing effect of centrifugal forces which 
suppress transport in the radial direction [i]. It has been established experimentally that 
there is a laminar core inside turbulent vortex rings [2]. A survey of theoretical and ex- 
perimental studies of the motion of vortices in a uniform fluid was made in [3]. The dynamics 
of an isolated vortex is determined to a significant extent by the involvement of the surround- 
ing fluid in the circulating motion and the loss of vorticity in the wake. 

The question of the stability and evolution of a vortex in a stratified fluid is more 
complex. In this case, centrifugal forces are jointed by buoyancy, which suppresses motion 
in the vertical direction. Most experimental studies have investigated the vertical motion 
of vortex rings in a nonuniform fluid [4], modeling the motion of thermals in a stratified 
atmosphere [5, 6], vortex cores behind an airplane wing [7, 8], and structural elements of 
free turbulent flows [9]. The authors of [i0] visualized a laminar vortex ring moving along 
the interface of mixing fluids. The interaction of an obliquely-moving vortex ring with a 
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shock wave was studied experimentally in [Ii]. It follows from analysis of the phenomeno- 
logical and numerical models used that a vortex ring moving along an interface should be 
inclined and lie horizontal [12]. The goal of the present study is to experimentally inves- 
tigate the dynamics and structure of laminar vortex rings in a fluid with a linear density 

distribution. 

i. The experiments were conducted in a rectangular basin measuring 140 x 40 x 46 cm. 
The side walls of the basin were made of optical glass. The basin was filled layer by layer 
with an aqueous solution of table salt of variable concentration. The thickness of the layers 
was 4 cm. Two days after the basin was filled, molecular diffusion had smoothed the stepped 
density profile. The uniformity of the gradient was checked with a shadowgram (the method 
of a vertical or horizontal slit - Foucault knife-edge) by means of a density marking [13]. 
The uniformity of the gradient was also checked by means of the distribution of electrical 
resistivity as measured with a microcontact transducer [14]. The flow pattern was visualized 
with an IAB-451 shadowgraph, with recording by an IKSR motion picture camera or an automatic 
RFK-5 photographic camera with speed from 4 to l0 frames/sec and 1/250 sec. The geometric 
characteristics of the vortices were measured from the shadowgram films with a STECOMETER 
stereo comparator (German Democratic Republic) with an error (allowing for the scale of the 
image) of • The amplitudes of the internal waves were measured with a "single-electrode" 
conductivity sensor [14] with an error no greater than • 

The vortices were created by ejecting the fluid from a metal tube bent at a right angle. 
The delivery part of the tube was positioned horizontally. The accuracy of its placement 
was checked with a KO-10 optical quadrant with an error of • A cylindrical nozzle with 
an outlet opening 0.75 and i cm in diameter was fitted on the end of the tube. The ejecting 
piston was placed in the surface part of the generator and was put in motion by a spring. 
Both the degree of compression and length of travel of the spring could be regulated. The 
quantity of fluid discharged and the initial velocity and diameter of the vortex depended 
on the height of the water in the tube and the length and velocity of the piston. By regu- 
lating these quantities, we succeeded in obtaining vortex rings with prescribed initial param- 
eters. The error of reproducibility of the initial velocity of the ring was • An addi- 
tional grate was installed inside the horizontal part of the tube to obtain slow laminar 
rings. The tests were conducted in liquid with a linear density distribution with a buoyancy 
period Tk = 3-15 sec. 

The shadowgrams were used to measure the following parameters of the vortex ring: the 
path traveled x (determined from the sharp leading edge of the vortex); translational velocity 
U; diameter D (the maximum vertical distance between the layers with a sharp density gradient 
on the outside boundary of the vortex). An "Elektronika D3-28" computer was used to perform 
a least-squares approximation of the test data with power and exponential relations. The 
representation was chosen on the basis of the condition of the maximum of the correlation 
coefficient and the minimum of the dispersion of the deviations. The main dimensionless 
characteristics were: the local Reynolds number Re = U(x)D(x)/v; the internal Froude number 
Fr = U2(x)Tk2/4~2D2(x) (v is the kinematic viscosity, equal to 0.01 cm/sec). In our tests, 
the initial velocity of the vortex U 0 = 2.5-20 cm/sec, while the initial values of the dimen- 
sionless characteristics Re 0 = 300-3200 and Fro = 0.65-840. Laminar and turbulent rings 
were seen in this range of parameters. We did not systematically study the effect of strati- 
fication on stability of motion in the ring, but it can be stated qualitatively that a hori- 
zontally moving ring will be laminar if Re 0 < i000. In a uniform liquid, a laminar ring 
is stable at Re 0 < 600, is unstable and disintegrates with the formation of a new, stable 
ring at Re 0 ~ i000, and becomes unstable from the very beginning at Re0 ~ 20,000 [15]. Strati- 
fication somewhat stabilizes motion in the ring. At I000 < Re 0 < 3000, a ring moving as 
a whole becomes partially turbulent, the spiral structure is disturbed, and there is mixing 
of the liquid in the ring and the wake. At Re0 > 3000, the ring is completely turbulent. 

2. When the liquid is forced out on the sharp edge of the generator, the boundary layer 
separates and rotates into a spiral which becomes the main core of the forming vortex. At 
this stage, the distance between the centers of vorticity is roughly equal to the diameter 
of the discharge opening. After t = 0.2 sec, the spiral is twisted around the core and the 
streamline is closed, forming the atmosphere of the ring. During this time, the ring travels 
a distance roughly equal to its diameter. The ring moves without a change in dimensions 
and with almost no decrease in velocity for a period of 0.5-0.7 sec in the initial stage 
of the trajectory. 
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Fig. 1 

The structure of the laminar ring at later stages of its motion is shown in Fig. 1 (the 
initial diameter of the formed ring D O = 1.47 cm, U 0 = 2.5 cm, T k = 3 sec, Re 0 = 366, Fr o = 
0.65). At the main stage of motion (Fig. la, t = 1.8 sec), the structure of the flow is 
similar to that seen in a uniform liquid [15, 16]. A thin toroidal core and an atmosphere 
around this core can be distinguished in the shadowgram. The form of the vortex ring re- 
sembles an ellipsoid with a regular spiral internal structure. The front part of the ring 
is more convex. The diffuse dark (in the second and fourth frames) and light (in the first 
and third frameS) bands are internal waves. Their amplitude is small at this stage of motion, 
and with the chosen instrument sensitivity they are recorded only at distances comparable 
to the diameter of the ring. A thin light streak is visible behind the vortex along the 
line of motion. The density gradient in this streak exceeds the density gradient in the 
undisturbed medium - a density wake of 1-1.5 mm thickness. A conical projection is seen 
in the region of contact with the density wake on the rear surface of the vortex. 

A thin, annular bound vortex is formed near the edge of the discharge opening. The 
diameter of this vortex is 1.5 times greater than the diameter of the shed vortex. Thin 
funnel-shaped striae connect the atmosphere of the bound vortex with the laminar density 
wake of the outgoing ring. The bound vortex subsequently slowly disintegrates, with the 
formation of an annular structure of density discontinuities near the edge of the generator. 
The nonsteady motion of the liquid in the ring formation region creates a system of transi- 
ent conical internal waves of low (compared to the other type of internal waves) amplitude. 
The vertical dimension of the ring initially increases and then begins to decrease. At the 
end of this stage, the ring is rapidly slowed and generates internal waves. 

Figure Ib shows the pattern of the vortex at the stage of intensive wave deceleration 
(t = 5 sec). The vortex loses its elliptical form, a fin is formed on its outside surface, 
the rear edge becomes planar and then concave, the laminar wake expands, and the spiral struc- 
ture inside the vortex is shifted toward its periphery. The region of sharp gradients of 
the refractive index n and density p (in an aqueous solution of NaCI, these values are linked 
by the linear relation 8n/Sz = 0.2318p/Sz [13]) is shifted toward the external boundary of 
the vortex. At this stage, the vortex intensively generates internal waves having a phase 
structure which is similar to that of bound internal waves [17]. Due to deceleration, the 
velocity of the vortex ring decreases and there is a simultaneous reduction in the length 
of the generating wave. 

The flow inside the ring degenerates as translational velocity decreases, and the form 
of the flow begins to have a significant effect on the field of internal waves which is emit- 
ted. The waves stretch the ring in the region of the crests and compress it in the vicinity 
of the troughs. Thin density striae remaining from the ring atmosphere are curved according- 
ly (Fig. ic, t = 6 sec). The remains of the atmosphere move slowly into the undisturbed 
medium. Here, the diameter of the lead part remains unchanged. 
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The diameter of the lead part subsequently decreases (with individual elements of the 
spiral structure being visible on the periphery of the cluster), while the rear part of the 
ring continues to expand, forming the characteristic conical structure (Fig. id, t = 9 sec). 
This form of the disintegrating ring is stable and was seen in all of the tests with differ- 
ent stratifications. It exists for 2-3 sec. The side of the cone is subsequently pressed 
toward the axis of motion, and the form of the boundary of the cluster becomes more irregular 
(Fig. le, t = 10 sec). Its vertical dimension pulsates over time in synchronicity with varia- 
tions of density on the boundary of the cluster which are initiated by the waves. After 
long periods of time (t > i0 sec), the vortex is nearly stopped (U < 0.i cm/sec), and the 
remains of its atmosphere exist in the form of a system of annular and conical striae (Fig. 
If, t = 15 sec). At this stage, internal waves cease to be generated, and the amplitude 
of these waves in the vicinity of the cluster is smaller than the amplitude of earlier- 
generated waves located some distance from the cluster. The form of the wave fronts gradu- 
ally acquires the conical shape typical of short transient internal waves of the Cauchy- 
Poisson type. At later stages, the remains of the ring slowly diffuse into the surrounding 
medium and disappear without a change in form. 

Mixing of the liquid inside the ring disturbs the initial density distribution, and 
after decay of the motions along the entire path of the ring there remains a column of liquid 
with a diameter equal to the diameter of the discharge hole. The density gradient inside 
this column is less than in the surrounding medium; it is manifest in the form of a dark 
horizontal band on the shadowgrams. A zone in which the density gradients are higher than 
the initial values is located between two cylindrical surfaces with an inside diameter dc = 
d and an outside diameter Dc = 2d, where d is the diameter of the discharge hole of the vortex 
generator. The outer boundary of the region of perturbed gradients is readily visible (Fig. 
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i) and is also evident in micrographs of the shadowgrams. Relict striated laminar struc- 
tures - residues of the ring atmosphere - exist for a period of 100-150 sec. Smoother large- 
scale density perturbations exist for 6-8 h. 

Table 1 shows the variation of the length of the internal wave generated as the ring 
advances. The table shows values of the half-length of the wave X/2 - the distance between 
an adjacent crest and trough for the top and bottom half-spaces (the width of the correspond- 
ing dark or light band on the shadowgrams). The wave number is reckoned from the leading 
edge of the vortex, k0 = U(x)Tk is the running value of the length of the bound internal wave 
[17]. 

3. Four sections can be distinguished in the motion of a vortex ring in a stratified 
liquid along a horizontal trajectory: an initial section (including the stage of ring forma- 
tion); a main stage (exponential dependence of velocity on the distance travelled and power 
dependence of velocity on time); intensive wave deceleration; disintegration. On the ini- 
tial section, with a duration of 0.3-0.5 sec, the velocity and size of the ring remain nearly 
constant. The duration of the main section depends on the velocity and amounts to 5-7 sec. 
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During this time, the ring traverses much of its total path (70-90%). On the relation U(t) 
shown in double-log coordinates in Fig. 2, this section is represented by a straight line 
(variants 1-4 correspond to Tk = 4.5, 4.5, 3, and i0 sec, u 0 = 10.6, 6.5, 2.5, and 3.13 cm/ 
sec; the different symbols denote different realizations with the same initial conditions). 
Measurements were stopped at x > 30 cm for variant i, since the partly turbulent ring (Re0 = 
1600) moved outside the field of view of the shadowgraph. The evolution of the remaining 
rings was followed until they stopped completely. On the main section, the relation U(t) 
is approximated by the formula U(t) = At -~ (cm/sec), where the coefficients A and ~ are de- 
termined by the least-squares method. Values of these coefficients are shown in Table 2. 
The exponent ~ decreases with an increase in the velocity and the buoyancy period. In a 
uniform liquid for Re 0 < 600, ~ = 1 [15]. On the section of active wave deceleration, the 
relation U(t) is exponential. Later, during the stage of disintegration of the ring, the 
relation is more accurately approximated by the power relation U(t) = A+t -~+ (cm/sec), ~+ = 
4.3. 

Figure 3 shows the dependence of velocity on the path travelled in a semilogarithmic 
scale (the values of the parameters for i, 2, and 4 coincide with the corresponding param- 
eters in Figs. 2 and 3 - T k = 3 sec, U0 = 3.84 cm/sec). The notation for variants 1-4 is 
the same as in Fig. 2. The main section is approximated by the relation U(x') = Bexp {-Sx'}, 
where x' = x/d. The coefficients B and 8, determined by the least-squares method, are shown 
in Table 2. The character of the relation U(x') is consistent with the relation measured 
in the uniform liquid. The coefficient 8, calculated from Fig. 5 [15], is equal to 0.19. 
On the deceleration section, U(x') = B+exp{-8+x'} (cm/sec). Meanwhile, the exponent in- 
creases to ~+ = 0.55, 0.53, and 0.62 (variants 2-4). 

The relations U(t) and U(x) are smooth on the initial section, while velocity changes 
suddenly on the main section. These changes increase with an increase in the initial velocity 
of the ring and the length of the path. Such fluctuations are associated mainly with the 
change in form and with pulsation of the geometric dimensions of the ring. The period of 
the pulsations is 0.1-0.2 sec for the horizontal dimensions and 0.8-1.2 sec for the vertical 
dimensions. 

Figure 4 shows the dependence of the vertical dimension of the ring on time in liquids 
with different buoyancy periods (T k = 15, i0, and 4.5 sec; U 0 = 20, 3.13, and 6.5 cm/sec - 
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variants 1-3). The different symbols on each curve denote individual realizations with the 
same initial velocities. It can be seen from Figs. 2 and 3 that there is an initial section 
(t < 0.5 sec) on which the size of the ring remains nearly constant; there is also a section 
on which the size of the ring remains nearly constant; there is also a section on which the 
vertical dimension of the ring increases (0.5 sec < t < t,, where t., is the time of cessation 
of diameter increase) and on which D(t) is approximated by the formula D(t) = Ct7 (cm) (the 
values of the coefficients C and 7 and the time t, are shown in Table 2); also present is a 
section of motion with a constant diameter (duration 2-3 sec); finally, there is a section 
associated with collapse and disintegration of the ring. This section begins at the stage 
of active deceleration. The duration of the stage in which the dimensions of the ring increase 
itself increases with an increase in the buoyancy period of the medium. On the collapse 
section, the vertical dimension of the ring decreases exponentially with time: D(T) = C+ exp. 
{--y+T} (cm), where T = t/T k (for 2 in Fig. 4 at t > 8 sec, C+ = 2.0, 7+ = 0.3; for 3 at t > 
7 sec, C+ = 2.5, 7+ = 0.34). The dependence of the vertical dimension of the ring on the path 
travelled is similar to that shown in Fig. 4. On the section of ring expansion, D(x') = 
Mexp {mx'} (cm), where for T k = 4.5 sec, U 0 = 6.5 cm/sec, M = i.i, K = 0.03; in the collapse 
phase, D(x') = M+exp{-~+x'} (cm), where for the same initial conditions M+ = 22.3, <+ = 0.15. 
The maximum distance travelled by these rings is 21-23 cm. The relative scatter lies within 
the range • which is consistent with the error of reproducibility of the initial velocity 
of the ring. For variant 2, M = 0.89, < = 0.02, M+ = 6.0, <+ = 0.08. 

With an increase in the initial velocity of the ring in the liquid with T k = 3 sec, there 
is some reduction in its initial diameter, an increase in the maximum size of the ring (which 
is evidence of an increase in the involvement of the surrounding liquid in the vortical mo- 
tion), and an increase in the length of the phase of motion with the maximum vertical dimen- 
sion (Fig. 5, T k = 3 sec, variants 1-3 at U0 = 13, 3.84, and 2.5 cm/sec). The time until 
attainment of the maximum vertical dimension t, also increases with an increase in velocity 
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(see Table 2). At the stage of expansion of the ring, its vertical dimension D(t) = Ct~ (cm), 
where the exponent increases appreciably with an increase in velocity (from 0.0004 to 0.19, 
Table 2). At the deceleration stage, D(~) = C~exp {--y+~} (cm), where C+(I) = 4.9, y+(1 ) = 
0.3, C+ (2) = 2.5, ~+(2) = 0.3, C+(3) = 2.2, u = 0.3 - variants 1-3. The exponent y+ 
0.3 (t > t,) is nearly independent of the initial velocity and the buoyancy scale. The graph 
of D(x') can be approximated by an exponential relation both for the expansion stage and 
for the collapse stage (for i, M = 1.3, K = 0.036, M+ = 15.2, <+ = 0.07; 2, M = 1.4, K = 
0.014, M+ = 13.6, K+ = 0.17; 3, M = 1.5, K = 0.00009, M+ = 17.1, ~+ = 0.27). 

Measurements of the vertical displacements of particles caused by the internal waves 
were made in the vertical plane passing through the line of motion of the center of the ring 
at the height z = 3.0 cm at different distances from the nozzle edge. Figure 6 shows a typi- 
cal record of these displacements (T k = 4.5 sec, U 0 = 8.5 cm/sec, the coordinates of the 
measurement points 21.5, 0, 3 cm). The dependence of the vertical displacement q on the 
dimensionless quantity ~ is oscillatory in character with a constant frequency and an expo- 
nentially decaying amplitude. In the liquid with T k = 4.5 sec, the period of the oscilla- 
tions is T = 4.9 sec and remains at this value with increasing distance from the nozzle edge 
(the duration of the first seven oscillations is 34.25 sec for x = 7.5 and 17.5 cm). Table 
i shows values of the coefficient $ in relation to q(~) = Kexp {-$~} (mm) (~ = t/Tk) at dif- 
ferent distances from the hole, with the maximum displacement of the particles in the first 
crest and trough q,, the length of the bound internal wave %0 = U(x)Tk, and wave half-lengths 
measured from the shadowgrams (T k = 4.5 sec, U 0 = 6.5 cm/sec). The coefficient K increases 
with increasing distance from the source, while the exponent $ is minimal at x = 15~5 cm. 
The wavelength becomes comparable to %0 at x > 17.5 cm, where Fr < 0.25. The damping factor 

exceeds the calculated value for bound internal waves [17] when it is estimated by using 
the measured wavelengths. This difference can be attributed to the short duration of the 
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stage of active wave deceleration. The ring acts as a generator of internal waves for a 
relatively short period of time. 

This conclusion is supported by an examination of the dependence on the distance to 
the source of the local value of Fr and the maximum recorded displacement of the particles 
in an adjacent crest and trough (Fig. 7, T k = 4.5 sec). On the main section Fr(x') = Eexp" 
{-px'}, El = 13, Pz = 0.23, U0 = 6.5 cm/sec (variant i, x < 20 cm), E2 = 26, P2 = 0.18, U0 = 
10.6 cm/sec (variant 2, x < 28 cm). Also shown here is the dependence of the maximum range 
of particle displacement N, on the distance to the discharge hole x over which the measure- 
ments were made. Here, T k = 4.5 sec, d = i cm, and the initial parameters remained the same 
(3, 4 for U 0 = 6.5 and 10.6 cm/sec). The intensity of wave generation increases with in- 
creasing distance of the ring from the source and reaches a maximum at those points of the 
trajectory near which the local internal Froude number is equal to 0.25. The maximum in- 
creases with a decrease in the initial velocity of the vortex. The maximum amplitude of 
the internal waves increases with an increase in initial velocity. 

Table 2 shows the main characteristics of the investigated rings. The table shows the 
limiting lifetime of a ring t+ (at t > t+, the translational velocity of the ring is less than 
0.i cm/sec; for the values shown in the brackets, this velocity exceeds the above value), 
the distance travelled L (determined similarly to t+), the initial diameter of the ring Do, 
the maximum diameter D,, and the time until attainment of the maximum diameter t,,~, = t,/T k. 

On the main section of ring motion, the exponent ~ in the relation U(t) = At -~ decreases 
with an increase in velocity for the given stratification. There is a corresponding decrease 
in the coefficient 8 in the relation U(x') = Bexp {-~x'}. The limiting lifetime of the ring 
t+ and the distance it travelled L increase with an increase in the initial velocity. The 
initial diameter Do is slightly dependent on the dimensional parameters of the problem (U0 
and Tk). The exponent 7 in the relation D(t) = CtY increases significantly with an increase 
in ring velocity, and there is a simultaneous increase in the maximum vertical dimension 
D,. The time until attainment of the maximum diameter (t,, ~,) increases with an increase 
in the initial velocity and the buoyancy scale. 

Comparing the laws of motion of a vortex ring in a uniform ideal fluid [18], a uniform 
viscous fluid [15], and a stratified medium, we can note the following: in the first case, 
the circulation F, the translational velocity U, and the diameter of the ring D do not change 
during motion. In a viscous uniform medium, D - t I/3, U ~ t -I, F - UD - t "2/3, U ~ e-8 x [15]. 
In a stratified medium, the corresponding indices are functions of the initial Froude and 
Reynolds numbers. The vertical dimension of the ring is a nonmonotonic function of time 
or distance travelled. The wave resistance turns out to have the decisive effect on the 
dynamics of the ring at Fr ~ 0.25. The long life of spiral or annular striae with high values 
of the density gradient (which are not surfaces of vorticity concentration) is evidence 
of the suppression of mixing in the radial direction. At all stages of its existence, a 
laminar vortex ring remains symmetrical relative to the line of motion of its center. 
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AN INTENSE TURBULENT THERMIC IN A STABLY STRATIFIED ATMOSPHERE. 

NUMERICAL MODELING 

Yu. A. Gostintsev and A. F. Solodovnik UDC 536.253 

Nonsteady-state convective turbulent flow due to climbing of a volume of liquid or gas 
with a deficit of density (a thermic) in an unrestricted medium has been theoretically studied 
in a number of works, which are reviewed in [i, 2]. These investigations allow one to quali- 
tatively describe the gas-dynamic structure of the flow and the mechanism behind heat and 
mass exchange between the thermic and the surrounding medium. A study of these flows is 
complicated by the lack of data on the intensity of turbulent exchange in a thermic, which 
leads to arbitrariness in selecting the values for the coefficients of turbulent transfer. 
Here, the conditions required for adequate numerical modeling of a turbulent thermic are 
determined, and the dynamics of its climb from the moment of formation to that of height 
equilibrium in a stably stratified atmosphere are calculated. 

i. Formulation of the Problem. The system of turbulence equations for describing axial- 
ly symmetric, nonsteady-state convective flow of gas in a heat-concentrated thermic has the 
following form in the Boussinesq approximation: 

OQ 0 ~ 0r 0 ~ O, 0 E O~ 0 E O~r Oo 
O-'-t + ~ r Or Or 7 0 - ~ = ~ x .  "~x + Or r Or "0"7' 

Oo O ~  O, t 0 0r ( O E O ~  t 0 EpO~)  N'O~ (i.i) 
o - i - + ~ 7 O r  r O r ~  = P r - 1  ~ ~ + 7 ~  bT --'7"~7-r' 

54, January-February, 1987. 

~F + h~ 7 ~ r ~rff~x = Pr-*~, + 

o8 o 8 o r  t o o ,  ( O E O ~ + _ . l  o ~, 0s 
Ot "~" Ox r Or r ~ e ~ =  Sc  - 1  _ _  - ~ , ~r~r~J,: 

= r ~ Or r Or 2 r Ox z'  

Q----~=~fr0~ r = O ,  f~ =~----~=ff=e-+0, r~+x2-+oo, 
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